Name: \_\_\_\_\_

Instructor:

## Math 10550, Exam 1, Solutions September 20, 2011.

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.

| PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! |     |  |     |     |     |     |  |
|---------------------------------------------------|-----|--|-----|-----|-----|-----|--|
| 1.                                                | (a) |  | (b) | (c) | (d) | (e) |  |
| 2.                                                | (a) |  | (b) | (c) | (d) | (e) |  |
| 3.                                                | (a) |  | (b) | (c) | (d) | (e) |  |
| 4.                                                | (a) |  | (b) | (c) | (d) | (e) |  |
| 5.                                                | (a) |  | (b) | (c) | (d) | (e) |  |
| 6.                                                | (a) |  | (b) | (c) | (d) | (e) |  |
| 7.                                                | (a) |  | (b) | (c) | (d) | (e) |  |
| 8.                                                | (a) |  | (b) | (c) | (d) | (e) |  |
| 9.                                                | (a) |  | (b) | (c) | (d) | (e) |  |
| 10.                                               | (a) |  | (b) | (c) | (d) | (e) |  |



## **Multiple Choice**

**1.**(6 pts.) Let  $f(x) = x^2$  and g(x) = x + 3. Which of the following is the graph of the equation

$$y = 1 + f(g(x))?$$

(Note that the label for each graph is given on the lower left of the graph.)

$$y = 1 + f(g(x)) = 1 + f(x+3) = 1 + (x+3)^2.$$

The graph of this curve is found by shifting the graph of  $y = x^2$  to the left by three units and upwards by one unit. (d) below.



(e) None of the above

| Name:       |  |
|-------------|--|
| Instructor: |  |

**2.**(6 pts.) For what value of c is the function f given by

$$f(x) = \begin{cases} \frac{c\sqrt{x} - c}{x - 1} & x \ge 1\\ x - c & x < 1 \end{cases}$$

continuous everywhere? This function is continuous on the interval  $(-\infty, 1)$  since the graph of y = x - c is continuous on that interval. Similarly the function f is continuous on the interval  $(1, \infty)$  since the graph of  $y = \frac{c\sqrt{x} - c}{x - 1}$  is continuous on that interval for any value of c.

This function is continuous at x = 1 if  $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x)$ .

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x - c) = 1 - c.$$
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{c\sqrt{x} - c}{x - 1} = \lim_{x \to 1^{-}} \frac{c(\sqrt{x} - 1)}{x - 1} = \lim_{x \to 1^{-}} \frac{c(\sqrt{x} - 1)(\sqrt{x} + 1)}{(x - 1)(\sqrt{x} + 1)}$$
$$= \lim_{x \to 1^{-}} \frac{c(x - 1)}{(x - 1)(\sqrt{x} + 1)} = \lim_{x \to 1^{-}} \frac{c}{(\sqrt{x} + 1)} = \frac{c}{2}.$$

Now f is continuous at x = 1 if  $1 - c = \frac{c}{2}$  or c = 2 - 2c, that is 3c = 2 or  $c = \frac{2}{3}$ .

(a) 
$$c = 1$$
 (b)  $c = \frac{2}{3}$  (c)  $c = \frac{1}{2}$ 

(d) 
$$c = 0$$
 (e)  $c = -\frac{1}{2}$ 

**3.**(6 pts.) Compute 
$$\lim_{x \to 2^{-}} \frac{4 - x^2}{x^2 - 4x + 4}$$
  
$$\lim_{x \to 2^{-}} \frac{4 - x^2}{x^2 - 4x + 4} = \lim_{x \to 2^{-}} \frac{(2 - x)(2 + x)}{(x - 2)(x - 2)} = \lim_{x \to 2^{-}} \frac{-(x - 2)(2 + x)}{(x - 2)(x - 2)} = \lim_{x \to 2^{-}} \frac{-(2 + x)}{(x - 2)}$$

As x approaches 2 from the left, -(x + 2) approaches -4 and is negative. As x approaches 2 from the left, (x - 2) approaches 0 and is negative.

Therefore the limit  $\lim_{x\to 2^-} \frac{-(2+x)}{(x-2)} = +\infty.$ 

(a) 2 (b) 
$$-\infty$$

- (c)  $+\infty$  (d) 4
- (e) Does not exist and is not  $\infty$  or  $-\infty$ .

4.(6 pts.) Compute

$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{\left(x - \frac{\pi}{2}\right)^2}$$

As x approaches  $\frac{\pi}{2}$  from the left sin x approaches 1 and is positive. As x approaches  $\frac{\pi}{2}$  from the left  $\left(x - \frac{\pi}{2}\right)^2$  approaches 0 and is positive. Therefore the limit  $\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{\left(x - \frac{\pi}{2}\right)^2} = \infty$ .

- (a)  $+\infty$  (b)  $-\infty$
- (c) Does not exist and is not  $\infty$  or  $-\infty$ . (d) 0
- (e) 1

**5.**(6 pts.) A particle is moving on a vertical axis. The height of the particle after t seconds is given by the function

$$H(t) = 400 - t^2 - \sqrt{t}$$
 meters.

Which of the following limits gives the velocity of the particle after 4 seconds (when t = 4)?

The velocity of the particle at time t is given by  $\lim_{h\to 0} \frac{H(t+h) - H(t)}{h}$ . When t = 4, we get that the velocity is equal to

$$\lim_{h \to 0} \frac{H(4+h) - H(4)}{h} = \lim_{h \to 0} \frac{400 - (t+h)^2 - \sqrt{t+h} - [400 - 16 - 2]}{h}$$
$$= \lim_{h \to 0} \frac{400 - (t+h)^2 - \sqrt{t+h} - 382}{h}$$

(a) 
$$\lim_{h \to 4} \frac{400 - (4+h)^2 - \sqrt{4+h}}{h}$$

(b) 
$$\lim_{h \to 0} \frac{400 - (4+h)^2 - \sqrt{4+h} - 382}{h}$$

(c) 
$$\lim_{h \to 0} \frac{400 - (h)^2 - \sqrt{h} - 382}{h}$$

(d) 
$$\lim_{h \to 4} \frac{400 - (4+h)^2 - \sqrt{4+h} - 382}{h}$$

(e) 
$$\lim_{h \to 0} \frac{400 - (4+h)^2 - \sqrt{4+h}}{h}$$

**6.**(6 pts.) Let  $f(x) = \sqrt[7]{x^3} + \sqrt{x} \sin x$ . What is f'(x)?

$$f(x) = x^{3/7} + x^{1/2} \sin x$$

Using the power rule and the product rule, we get

$$f'(x) = \frac{3}{7}x^{-(4/7)} + (\sin x)\frac{1}{2\sqrt{x}} + x^{1/2}\cos x.$$
$$= \frac{3}{7\sqrt[7]{x^4}} + \frac{\sin x}{2\sqrt{x}} + \sqrt{x}\cos x.$$

Name: \_\_\_\_\_ Instructor: \_\_\_\_\_

(a) 
$$\frac{3}{7\sqrt[7]{x^4}} + \sqrt{x}\cos x + \frac{\sin x}{2\sqrt{x}}$$

(c) 
$$\frac{3}{7\sqrt[7]{x^4}} + \frac{\cos x}{2\sqrt{x}}$$

(e) 
$$\frac{3}{7\sqrt[7]{x^4}} + \frac{\sin x}{2\sqrt{x}}$$

(b) 
$$\sqrt[7]{3x^2} + \frac{\sin x}{2\sqrt{x}}$$
  
(d)  $\sqrt[7]{3x^2} + \sin x + \sqrt{x}\cos x$ 

(b)

**7.**(6 pts.) Find the equation of the tangent line to  $y = x^2 \cos x + 1$  at  $x = \frac{\pi}{2}$ .

Using the product rule and the summation rule, we get

$$y' = 2x\cos x + x^2(-\sin x).$$

When  $x = \frac{\pi}{2}$ ,

$$y' = 2\frac{\pi}{2}\cos\frac{\pi}{2} - \frac{\pi^2}{4}(\sin\frac{\pi}{2}) = 2\frac{\pi}{2} \cdot 0 - \frac{\pi^2}{4} \cdot 1 = \frac{\pi^2}{4}.$$

Therefore the slope of the tangent to the curve at  $x = \frac{\pi}{2}$  is  $m = -\frac{\pi^2}{4}$  and a point on the tangent is given by  $(\frac{\pi}{2}, (\frac{\pi}{2})^2 \cos(\frac{\pi}{2}) + 1) = (\frac{\pi}{2}, (\frac{\pi}{2})^2 \cdot 0 + 1) = (\frac{\pi}{2}, 1).$ 

Therefore, the equation of the tangent to the curve when  $x = \frac{\pi}{2}$  is given by

$$y - 1 = -\frac{\pi^2}{4}(x - \frac{\pi}{2}).$$

- (a)  $y-1 = \left(-\frac{\pi^2}{4}+1\right)\left(x-\frac{\pi}{2}\right)$  (b)  $y-1 = -\pi\left(x-\frac{\pi}{2}\right)$
- (c)  $y = -\frac{\pi^2}{4}x$  (d)  $y 1 = -\frac{\pi^2}{4}(x \frac{\pi}{2})$
- (e)  $y = \pi x + 1$
- 8.(6 pts.) Let  $f(x) = \cos(x^2 + 2x 1)$ . Find f'(x). f(x) = g(h(x)), where  $g(x) = \cos x$  and  $h(x) = x^2 + 2x - 1$ . By the chain rule,  $f'(x) = g'(h(x))h'(x) = -[\sin(x^2 + 2x - 1)] \cdot (2x + 2) = -(2x + 2)\sin(x^2 + 2x - 1)$ .
- (a)  $(2x+2)\cos(x^2+2x-1)$  (b)  $-\sin(x^2+2x-1)$

(c) 
$$-\sin(x^2 + 2x - 1) + \cos(2x + 2)$$
 (d)  $(2x + 2)\sin(x^2 + 2x - 1)$ 

(e) 
$$-(2x+2)\sin(x^2+2x-1)$$

**9.**(6 pts.) For  $f(x) = (x^3 + 2) \sin x$ , find f''(x).

Using the product rule, we get  $f'(x) = 3x^2 \sin x + (x^3 + 2) \cos x$ . Using the product rule for both terms above, we get

 $f''(x) = 6x\sin x + 3x^2\cos x + 3x^2\cos x - (x^3 + 2)\sin x = 6x\sin x + 6x^2\cos x - (x^3 + 2)\sin x.$ 

- (a)  $6x \sin x + 6x^2 \cos x (x^3 + 2) \sin x$
- (b)  $6x \sin x (x^3 + 2) \sin x$
- (c)  $6x\sin x + 3x^2\cos x (x^3 + 2)\sin x$
- (d)  $-6x\sin x$
- (e)  $6x\sin x 6x^2\cos x (x^3 + 2)\sin x$

Name: \_\_\_\_\_

Instructor:

10.(6 pts.) If 
$$f(x) = \frac{x^3 + 2}{x^{100} - x}$$
, find  $f'(x)$ .  
Using the quotient rule, we get
$$f'(x) = \frac{(x^{100} - x)(3x^2) - (x^3 + 2)(100x^{99} - 1)}{(x^{100} - x)^2}.$$
(a)  $\frac{(x^{100} - x)(3x^2) + (x^3 + 2)(100x^{99} - 1)}{(x^{100} - x)^2}$ 
(b)  $\frac{(x^{100} - x)(3x^2) - (x^3 + 2)(100x^{99} - 1)}{(x^{100} - x)^2}$ 
(c)  $\frac{(x^3 + 2)(100x^{99} - 1) - (x^{100} - x)(3x^2)}{(x^{100} - x)(3x^2)}$ 

(c) 
$$(x^{100} - x)^2$$

(d) 
$$\frac{3x^2}{100x^{99}-1}$$

(e) 
$$\frac{(x^{100} - x)(3x^2) - (x^3 + 2)(100x^{99} - 1)}{(x^3 + 2)^2}$$

## **Partial Credit**

You must show your work on the partial credit problems to receive credit!

**11.**(10 pts.) Show that the function

$$f(x) = 3x - 1 - x^3$$

has a root in the interval [1, 2].

Make sure to identify which theorem you use and verify that all of the conditions for its use are satisfied for full credit.

f is a continuous function, since it is a polynomial.

We have f(1) = 1 > 0 and f(2) = -3 < 0.

Therefore by the Intermediate value theorem there is some number c with 1 < c < 2 for which f(c) = 0, giving us a root of the function in the interval [1, 2].

 Name:
 \_\_\_\_\_\_

 Instructor:
 \_\_\_\_\_\_

**12.**(6 pts.) Give a rough sketch of the graph of a continuous function y = f(x) below, for which

f(0) = -1 f'(0) = 1, f(2) = 3, f'(2) = 0, f(-2) = 0, f'(-2) = -1,



**13.**(12 pts.) Consider the curve given by  $y = \frac{x^3}{3} + x^2 + x + 1$ .

(a) One of the tangent lines to the curve is horizontal. Find its equation.

$$y' = x^2 + 2x + 1$$

When the tangent line to the curve is horizontal, it has slope m = 0.

Therefore the derivative of the function is 0 at the point of tangency.

$$x^{2} + 2x + 1 = 0$$
 if  $(x+1)(x+1) = 0$  if  $x = -1$ .

Therefore the point of tangency is given by  $(-1, \frac{(-1)^3}{3} + (-1)^2 + (-1) + 1) = (-1, \frac{2}{3}).$ 

The equation of the (horizontal) tangent line is given by

$$y - \frac{2}{3} = 0(x+1)$$
 or  $y = \frac{2}{3}$ .

(b) Two of the tangent lines to the curve are parallel to the line y = x. Find their equations.

A line parallel to the line y = x has the same slope, m = 1.

Since  $y' = x^2 + 2x + 1$ , a tangent line to the curve has slope m = 1 if  $x^2 + 2x + 1 = 1$  or  $x^2 + 2x = 0$  or x(x + 2) = 0, that is x = 0 or x = -2.

When x = 0, the corresponding point on the curve is

$$(0, \frac{(0)^3}{3} + (0)^2 + (0) + 1) = (0, 1)$$

and the tangent line at this point is given by

$$y - 1 = 1(x - 0)$$
 or  $y = x + 1$ .

When x = -2, the corresponding point on the curve is

$$(-2, \frac{(-2)^3}{3} + (-2)^2 + (-2) + 1) = (-2, \frac{1}{3})$$

and the tangent line at this point is given by

$$y - \frac{1}{3} = 1(x+2)$$
 or  $y = x + \frac{7}{3}$ .

Name: \_\_\_\_\_\_ Instructor: \_\_\_\_\_\_

 ${\bf 14.} (12 {\rm ~pts.})$  Consider the following table of function values:

|       | x = 2      | x = 3 |
|-------|------------|-------|
| f(x)  | 2          | -1    |
| g(x)  | $\sqrt{3}$ | 1     |
| f'(x) | $\sqrt{2}$ | 2     |
| g'(x) | 1/2        | 1/2   |

(a) Find (f + g)'(2)

$$(f+g)'(2) = f'(2) + g'(2) = \sqrt{2} + \frac{1}{2}.$$

(b) Find 
$$\left(\frac{f}{g}\right)'(3)$$
.  
 $\left(\frac{f}{g}\right)'(3) = \frac{g(3)f'(3) - f(3)g'(3)}{(g(3))^2}$   
 $= \frac{1 \cdot 2 - (-1) \cdot \frac{1}{2}}{1} = 2.5.$ 

(c) Find 
$$h'(2)$$
 where  $h(x) = f([g(x)]^2)$ .

$$h'(x) = f'([g(x)]^2)2[g(x)]g'(x).$$
  

$$h'(2) = f'([g(2)]^2)2[g(2)]g'(2)$$
  

$$= f'([\sqrt{3}]^2)2[\sqrt{3}]\frac{1}{2}$$
  

$$= f'(3)\sqrt{3}$$
  

$$= 2 \cdot \sqrt{3}$$

Name: \_\_\_\_\_

Instructor: <u>ANSWERS</u>

## Math 10550, Exam 1, Solutions September 20, 2011.

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.

| PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! |     |  |         |         |         |         |  |
|---------------------------------------------------|-----|--|---------|---------|---------|---------|--|
| 1.                                                | (a) |  | (b)     | (c)     | (ullet) | (e)     |  |
| 2.                                                | (a) |  | (•)     | (c)     | (d)     | (e)     |  |
| 3.                                                | (a) |  | (b)     | (ullet) | (d)     | (e)     |  |
| 4.                                                | (•) |  | (b)     | (c)     | (d)     | (e)     |  |
| 5.                                                | (a) |  | (•)     | (c)     | (d)     | (e)     |  |
| 6.                                                | (•) |  | (b)     | (c)     | (d)     | (e)     |  |
| 7.                                                | (a) |  | (b)     | (c)     | (ullet) | (e)     |  |
| 8.                                                | (a) |  | (b)     | (c)     | (d)     | (ullet) |  |
| 9.                                                | (•) |  | (b)     | (c)     | (d)     | (e)     |  |
| 10.                                               | (a) |  | (ullet) | (c)     | (d)     | (e)     |  |

 Please do NOT write in this box.

 Multiple Choice

 11.

 12.

 13.

 14.

 Total