Name: \qquad
Instructor:

Math 10550, Exam 1, Solutions

September 20, 2011.

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	(e)
4. (a)	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	(e)
6. (a)	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(d)	(e)

Please do NOT write in this box.	
Multiple Choice__	
11.	
12.	
13.	
14.	
Total	\square

Name: \qquad
Instructor: \qquad

Multiple Choice

1. (6 pts.) Let $f(x)=x^{2}$ and $g(x)=x+3$. Which of the following is the graph of the equation

$$
y=1+f(g(x)) ?
$$

(Note that the label for each graph is given on the lower left of the graph.)

$$
y=1+f(g(x))=1+f(x+3)=1+(x+3)^{2} .
$$

The graph of this curve is found by shifting the graph of $y=x^{2}$ to the left by three units and upwards by one unit. (d) below.
(a)

(b)

(c)

(d)

(e) None of the above

Name: \qquad
Instructor: \qquad
2. (6 pts.) For what value of c is the function f given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{c \sqrt{x}-c}{x-1} & x \geq 1 \\
x-c & x<1
\end{array}\right.
$$

continuous everywhere? This function is continuous on the interval $(-\infty, 1)$ since the graph of $y=x-c$ is continuous on that interval. Similarly the function f is continuous on the interval $(1, \infty)$ since the graph of $y=\frac{c \sqrt{x}-c}{x-1}$ is continuous on that interval for any value of c.

This function is continuous at $x=1$ if $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)$.

$$
\begin{gathered}
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(x-c)=1-c . \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{c \sqrt{x}-c}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{c(\sqrt{x}-1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{c(\sqrt{x}-1)(\sqrt{x}+1)}{(x-1)(\sqrt{x}+1)} \\
=\lim _{x \rightarrow 1^{-}} \frac{c(x-1)}{(x-1)(\sqrt{x}+1)}=\lim _{x \rightarrow 1^{-}} \frac{c}{(\sqrt{x}+1)}=\frac{c}{2}
\end{gathered}
$$

Now f is continuous at $x=1$ if $1-c=\frac{c}{2}$ or $c=2-2 c$, that is $3 c=2$ or $c=\frac{2}{3}$.
(a) $c=1$
(b) $\quad c=\frac{2}{3}$
(c) $\quad c=\frac{1}{2}$
(d) $c=0$
(e) $c=-\frac{1}{2}$

Name: \qquad
Instructor: \qquad
3. $\left(6\right.$ pts.) Compute $\lim _{x \rightarrow 2^{-}} \frac{4-x^{2}}{x^{2}-4 x+4}$

$$
\lim _{x \rightarrow 2^{-}} \frac{4-x^{2}}{x^{2}-4 x+4}=\lim _{x \rightarrow 2^{-}} \frac{(2-x)(2+x)}{(x-2)(x-2)}=\lim _{x \rightarrow 2^{-}} \frac{-(x-2)(2+x)}{(x-2)(x-2)}=\lim _{x \rightarrow 2^{-}} \frac{-(2+x)}{(x-2)}
$$

As x approaches 2 from the left, $-(x+2)$ approaches -4 and is negative.
As x approaches 2 from the left, $(x-2)$ approaches 0 and is negative.
Therefore the limit $\lim _{x \rightarrow 2^{-}} \frac{-(2+x)}{(x-2)}=+\infty$.
(a) 2
(b) $-\infty$
(c) $+\infty$
(d) 4
(e) Does not exist and is not ∞ or $-\infty$.
4. (6 pts.) Compute

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x}{\left(x-\frac{\pi}{2}\right)^{2}}
$$

As x approaches $\frac{\pi}{2}$ from the left $\sin x$ approaches 1 and is positive.
As x approaches $\frac{\pi}{2}$ from the left $\left(x-\frac{\pi}{2}\right)^{2}$ approaches 0 and is positive.
Therefore the limit $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x}{\left(x-\frac{\pi}{2}\right)^{2}}=\infty$.
(a) $+\infty$
(b) $-\infty$
(c) Does not exist and is not ∞ or $-\infty$.
(d) 0
(e) 1

Name: \qquad
Instructor: \qquad
5. (6 pts .) A particle is moving on a vertical axis. The height of the particle after t seconds is given by the function

$$
H(t)=400-t^{2}-\sqrt{t} \text { meters. }
$$

Which of the following limits gives the velocity of the particle after 4 seconds (when $t=4)$?

The velocity of the particle at time t is given by $\lim _{h \rightarrow 0} \frac{H(t+h)-H(t)}{h}$. When $t=4$, we get that the velocity is equal to

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{H(4+h)-H(4)}{h}=\lim _{h \rightarrow 0} \frac{400-(t+h)^{2}-\sqrt{t+h}-[400-16-2]}{h} \\
=\lim _{h \rightarrow 0} \frac{400-(t+h)^{2}-\sqrt{t+h}-382}{h}
\end{gathered}
$$

(a) $\lim _{h \rightarrow 4} \frac{400-(4+h)^{2}-\sqrt{4+h}}{h}$
(b) $\lim _{h \rightarrow 0} \frac{400-(4+h)^{2}-\sqrt{4+h}-382}{h}$
(c) $\lim _{h \rightarrow 0} \frac{400-(h)^{2}-\sqrt{h}-382}{h}$
(d) $\lim _{h \rightarrow 4} \frac{400-(4+h)^{2}-\sqrt{4+h}-382}{h}$
(e) $\lim _{h \rightarrow 0} \frac{400-(4+h)^{2}-\sqrt{4+h}}{h}$
6. (6 pts.) Let $f(x)=\sqrt[7]{x^{3}}+\sqrt{x} \sin x$. What is $f^{\prime}(x)$?

$$
f(x)=x^{3 / 7}+x^{1 / 2} \sin x
$$

Using the power rule and the product rule, we get

$$
\begin{aligned}
f^{\prime}(x)= & \frac{3}{7} x^{-(4 / 7)}+(\sin x) \frac{1}{2 \sqrt{x}}+x^{1 / 2} \cos x \\
& =\frac{3}{7 \sqrt[7]{x^{4}}}+\frac{\sin x}{2 \sqrt{x}}+\sqrt{x} \cos x
\end{aligned}
$$

Name:
Instructor:
(a) $\frac{3}{7 \sqrt[7]{x^{4}}}+\sqrt{x} \cos x+\frac{\sin x}{2 \sqrt{x}}$
(b) $\sqrt[7]{3 x^{2}}+\frac{\sin x}{2 \sqrt{x}}$
(c) $\frac{3}{7 \sqrt[7]{x^{4}}}+\frac{\cos x}{2 \sqrt{x}}$
(d) $\sqrt[7]{3 x^{2}}+\sin x+\sqrt{x} \cos x$
(e) $\frac{3}{7 \sqrt[7]{x^{4}}}+\frac{\sin x}{2 \sqrt{x}}$

Name: \qquad
Instructor: \qquad
7. (6 pts.) Find the equation of the tangent line to $y=x^{2} \cos x+1$ at $x=\frac{\pi}{2}$.

Using the product rule and the summation rule, we get

$$
y^{\prime}=2 x \cos x+x^{2}(-\sin x)
$$

When $x=\frac{\pi}{2}$,

$$
y^{\prime}=2 \frac{\pi}{2} \cos \frac{\pi}{2}-\frac{\pi^{2}}{4}\left(\sin \frac{\pi}{2}\right)=2 \frac{\pi}{2} \cdot 0-\frac{\pi^{2}}{4} \cdot 1=\frac{\pi^{2}}{4}
$$

Therefore the slope of the tangent to the curve at $x=\frac{\pi}{2}$ is $m=-\frac{\pi^{2}}{4}$ and a point on the tangent is given by $\left(\frac{\pi}{2},\left(\frac{\pi}{2}\right)^{2} \cos \left(\frac{\pi}{2}\right)+1\right)=\left(\frac{\pi}{2},\left(\frac{\pi}{2}\right)^{2} \cdot 0+1\right)=\left(\frac{\pi}{2}, 1\right)$.

Therefore, the equation of the tangent to the curve when $x=\frac{\pi}{2}$ is given by

$$
y-1=-\frac{\pi^{2}}{4}\left(x-\frac{\pi}{2}\right)
$$

(a) $y-1=\left(-\frac{\pi^{2}}{4}+1\right)\left(x-\frac{\pi}{2}\right)$
(b) $\quad y-1=-\pi\left(x-\frac{\pi}{2}\right)$
(c) $y=-\frac{\pi^{2}}{4} x$
(d) $y-1=-\frac{\pi^{2}}{4}\left(x-\frac{\pi}{2}\right)$
(e) $y=\pi x+1$
8. (6 pts.) Let $f(x)=\cos \left(x^{2}+2 x-1\right)$. Find $f^{\prime}(x)$.
$f(x)=g(h(x))$, where $g(x)=\cos x$ and $h(x)=x^{2}+2 x-1$.
By the chain rule,

$$
f^{\prime}(x)=g^{\prime}(h(x)) h^{\prime}(x)=-\left[\sin \left(x^{2}+2 x-1\right)\right] \cdot(2 x+2)=-(2 x+2) \sin \left(x^{2}+2 x-1\right) .
$$

(a) $(2 x+2) \cos \left(x^{2}+2 x-1\right)$
(b) $-\sin \left(x^{2}+2 x-1\right)$
(c) $-\sin \left(x^{2}+2 x-1\right)+\cos (2 x+2)$
(d) $(2 x+2) \sin \left(x^{2}+2 x-1\right)$
(e) $\quad-(2 x+2) \sin \left(x^{2}+2 x-1\right)$

Name:
Instructor: \qquad
9. (6 pts.) For $f(x)=\left(x^{3}+2\right) \sin x$, find $f^{\prime \prime}(x)$.

Using the product rule, we get $f^{\prime}(x)=3 x^{2} \sin x+\left(x^{3}+2\right) \cos x$.
Using the product rule for both terms above, we get
$f^{\prime \prime}(x)=6 x \sin x+3 x^{2} \cos x+3 x^{2} \cos x-\left(x^{3}+2\right) \sin x=6 x \sin x+6 x^{2} \cos x-\left(x^{3}+2\right) \sin x$.
(a) $6 x \sin x+6 x^{2} \cos x-\left(x^{3}+2\right) \sin x$
(b) $6 x \sin x-\left(x^{3}+2\right) \sin x$
(c) $6 x \sin x+3 x^{2} \cos x-\left(x^{3}+2\right) \sin x$
(d) $\quad-6 x \sin x$
(e) $6 x \sin x-6 x^{2} \cos x-\left(x^{3}+2\right) \sin x$

Name: \qquad
Instructor: \qquad
10. (6 pts.) If $f(x)=\frac{x^{3}+2}{x^{100}-x}$, find $f^{\prime}(x)$.

Using the quotient rule, we get

$$
f^{\prime}(x)=\frac{\left(x^{100}-x\right)\left(3 x^{2}\right)-\left(x^{3}+2\right)\left(100 x^{99}-1\right)}{\left(x^{100}-x\right)^{2}} .
$$

(a) $\frac{\left(x^{100}-x\right)\left(3 x^{2}\right)+\left(x^{3}+2\right)\left(100 x^{99}-1\right)}{\left(x^{100}-x\right)^{2}}$
(b) $\frac{\left(x^{100}-x\right)\left(3 x^{2}\right)-\left(x^{3}+2\right)\left(100 x^{99}-1\right)}{\left(x^{100}-x\right)^{2}}$
(c) $\frac{\left(x^{3}+2\right)\left(100 x^{99}-1\right)-\left(x^{100}-x\right)\left(3 x^{2}\right)}{\left(x^{100}-x\right)^{2}}$
(d) $\frac{3 x^{2}}{100 x^{99}-1}$
(e) $\frac{\left(x^{100}-x\right)\left(3 x^{2}\right)-\left(x^{3}+2\right)\left(100 x^{99}-1\right)}{\left(x^{3}+2\right)^{2}}$

Name:
Instructor: \qquad

Partial Credit

You must show your work on the partial credit problems to receive credit!
11.(10 pts.) Show that the function

$$
f(x)=3 x-1-x^{3}
$$

has a root in the interval $[1,2]$.
Make sure to identify which theorem you use and verify that all of the conditions for its use are satisfied for full credit.
f is a continuous function, since it is a polynomial.

We have $f(1)=1>0$ and $f(2)=-3<0$.

Therefore by the Intermediate value theorem there is some number c with $1<c<2$ for which $f(c)=0$, giving us a root of the function in the interval $[1,2]$.

Name: \qquad
Instructor: \qquad
12. (6 pts.) Give a rough sketch of the graph of a continuous function $y=f(x)$ below, for which

$$
f(0)=-1 \quad f^{\prime}(0)=1, \quad f(2)=3, \quad f^{\prime}(2)=0, \quad f(-2)=0, \quad f^{\prime}(-2)=-1
$$

Name: \qquad
Instructor: \qquad
13. (12 pts.) Consider the curve given by $y=\frac{x^{3}}{3}+x^{2}+x+1$.
(a) One of the tangent lines to the curve is horizontal. Find its equation.

$$
y^{\prime}=x^{2}+2 x+1 .
$$

When the tangent line to the curve is horizontal, it has slope $m=0$.
Therefore the derivative of the function is 0 at the point of tangency.

$$
x^{2}+2 x+1=0 \quad \text { if }(x+1)(x+1)=0 \quad \text { if } \quad x=-1 .
$$

Therefore the point of tangency is given by $\left(-1, \frac{(-1)^{3}}{3}+(-1)^{2}+(-1)+1\right)=\left(-1, \frac{2}{3}\right)$.
The equation of the (horizontal) tangent line is given by

$$
y-\frac{2}{3}=0(x+1) \text { or } y=\frac{2}{3} \text {. }
$$

(b) Two of the tangent lines to the curve are parallel to the line $y=x$. Find their equations.
A line parallel to the line $y=x$ has the same slope, $m=1$.
Since $y^{\prime}=x^{2}+2 x+1$, a tangent line to the curve has slope $m=1$ if $x^{2}+2 x+1=1$ or $x^{2}+2 x=0$ or $x(x+2)=0$, that is $\mathrm{x}=0$ or $\mathrm{x}=-2$.

When $x=0$, the corresponding point on the curve is

$$
\left(0, \frac{(0)^{3}}{3}+(0)^{2}+(0)+1\right)=(0,1)
$$

and the tangent line at this point is given by

$$
y-1=1(x-0) \text { or } y=x+1 \text {. }
$$

When $x=-2$, the corresponding point on the curve is

$$
\left(-2, \frac{(-2)^{3}}{3}+(-2)^{2}+(-2)+1\right)=\left(-2, \frac{1}{3}\right)
$$

and the tangent line at this point is given by

$$
y-\frac{1}{3}=1(x+2) \quad \text { or } \quad y=x+\frac{7}{3} \text {. }
$$

Name: \qquad
Instructor: \qquad
14. (12 pts.) Consider the following table of function values:

	$x=2$	$x=3$
$f(x)$	2	-1
$g(x)$	$\sqrt{3}$	1
$f^{\prime}(x)$	$\sqrt{2}$	2
$g^{\prime}(x)$	$1 / 2$	$1 / 2$

(a) Find $(f+g)^{\prime}(2)$

$$
(f+g)^{\prime}(2)=f^{\prime}(2)+g^{\prime}(2)=\sqrt{2}+\frac{1}{2} .
$$

(b) Find $\left(\frac{f}{g}\right)^{\prime}(3)$.

$$
\begin{gathered}
\left(\frac{f}{g}\right)^{\prime}(3)=\frac{g(3) f^{\prime}(3)-f(3) g^{\prime}(3)}{(g(3))^{2}} \\
\quad=\frac{1 \cdot 2-(-1) \cdot \frac{1}{2}}{1}=2.5
\end{gathered}
$$

(c) Find $h^{\prime}(2)$ where $h(x)=f\left([g(x)]^{2}\right)$.

$$
\begin{aligned}
h^{\prime}(x)= & f^{\prime}\left([g(x)]^{2}\right) 2[g(x)] g^{\prime}(x) . \\
h^{\prime}(2)= & f^{\prime}\left([g(2)]^{2}\right) 2[g(2)] g^{\prime}(2) \\
= & f^{\prime}\left([\sqrt{3}]^{2}\right) 2[\sqrt{3}] \frac{1}{2} \\
& =f^{\prime}(3) \sqrt{3} \\
& =2 \cdot \sqrt{3}
\end{aligned}
$$

Name: \qquad
Instructor: ANSWERS

Math 10550, Exam 1, Solutions

September 20, 2011.

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(-)	(e)
2. (a)	($)$	(c)	(d)	(e)
3. (a)	(b)	(${ }^{\text {) }}$	(d)	(e)
4. ()	(b)	(c)	(d)	(e)
5. (a)	($)^{\text {(}}$	(c)	(d)	(e)
6. ()	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(-)	(e)
8. (a)	(b)	(c)	(d)	($)$
9. ()	(b)	(c)	(d)	(e)
10. (a)	($)^{\text {(}}$	(c)	(d)	(e)

Please do NOT write in this box.	
Multiple Choice__	
11.	
12.	
13.	
14.	
Total	

